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Abstract. An anisotropic statistical model on a cubic lattice consisting of locally interacting
six-vertex planes solvable via Bethe ansatz (BA), is studied. Symmetries of BA lead to an
infinite hierarchy of possible phases, which is further restricted by numerical simulations. The
model is solved for an arbitrary value of the interlayer coupling constant. Resulting is the phase
diagram in general three-parameter space. Two new phases of chiral (spiral) character and a
new first-order phase transition appear due to the interplane interaction. Exact mapping onto the
models with some inhomogeneous sets of interlayer coupling constants is established.

1. Introduction

Exactly solvable models, e.g. models for which set of physical quantities such as the
bulk free energy, the interfacial tension, some critical exponents, etc, can be calculated
analytically, play an important role in statistical mechanics and the phase transitions theory.
Most solvable statistical models are two-dimensional (see [1] for review). The Yang–
Baxter equation, or the star–triangle equation, serves as an integrability condition, or a
transfer-matrices commutativity condition for 2D solvable models. Unlike 2D models,
solvable models in 3D are very rare examples. Usually solvable 3D models—see e.g.
the Zamolodchikov model [2] and its generalizations [3]—are based on a solution of the
tetrahedron equation. The latter is a natural generalization of the Yang–Baxter equation,
YBE, and serves as transfer-matrices in the 3D commutativity condition.

Unfortunately all 3D solvable models known so far possess a common rather
unsatisfactory feature, from the viewpoint of applications to statistical mechanics—they
incurably have negative [2] or even complex [3] Boltzmann weights. Since these weights
are probabilities (up to a normalization), this property makes the statistical mechanical
interpretation of the models highly problematical (although the associated quantum problem
may still be sensible).

Recently a method was proposed in [5, 6] which allows one to construct solvable
statistical models (however, anisotropic) with positive Boltzmann weights and local
interactions in 3D starting from solvable 2D models. The idea is the following. The whole
row of an infinite number of separate sites (vertices) is considered as a simplest object.
The state probabilities (Boltzmann weights) are defined as the product of those for each
site separately, multiplied by the interaction factors depending upon the local configurations
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of each of the two neighbouring sites. Such construction leads to multilayered models
on a 3D lattice, consisting of 2D integrable plane-layers, with specific interaction between
them. What is important is that transfer-matrix commutativity condition turns out not
to be a tetrahedron equation, but an infinite set of usual Yang-Baxter equations. These
equations can be satisfied simultaneously, producing the variety of 3D-extended models
[6] satisfying the necessary physical requirements—positivity of Boltzmann weights and
locality of interactions.

Here we investigate the simplest example of such a model—the 3D-extended six-vertex
model, with a homogeneous set of interplane coupling constants. The six-vertex model
is a rather popular subject to study, as it is the limiting case for many solvable models
in the critical region (see e.g. [1]). The 3D solvable extension for the six-vertex model
was obtained in [5], and in [6] generalized to other solvable vertex models with charge
conservation and inhomogeneous sequences of interplane interaction constants. In [5] the
phase diagram for the free-fermion case was conjectured. Here we go beyond this restriction
and obtain the phase diagram in the general three-parameter space, for the extended six-
vertex model.

The paper is organized as follows. First we recall the definition of the anisotropic
3D-extended six-vertex model and consider the strong interplane interaction limit. Then
we give the alternative derivation of the Bethe ansatz (BA) equations, using the established
gauge equivalence of our multilayer model to the set of 2D six-vertex planes, each one
in a field defined by the polarization of planes (neighbours). Using the symmetries of
BA, we prove the equivalence between the model with a homogeneous set of interaction
constants and some models with inhomogeneous sets. We make use of these results, together
with hypothesis of non-degeneracy of maximal eigenvalue, to eliminate the problem. The
resulting phase diagram is obtained in the next section. A conclusion and a discussion of
the possible generalizations ends the paper.

2. Definition of the model

The model we consider is a system ofK planes. Each of these planes is the symmetric
six-vertex solvable model on a squareN ×M lattice [8]. We can ‘paste’ togetherij -sites of
all planes and formally get a 2D system with a complex site consisting ofK simple vertices
(see figure 1).

Figure 1. Multivertex consisting ofK simple vertices.
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Figure 2. Permissible vertex configurations for the six-vertex model. Boltzmann weights of
configurationsw1 = w2 = a; w3 = w4 = b; w5 = w6 = c.

The Boltzmann weight of such a multivertex fragment has the form

Lα1α2...αKβ1β2...βK

α′
1α

′
2...α

′
Kβ ′

1β
′
2...β

′
K

=
K∏

k=1

L6v
αk,βk

α′
k ,β

′
k

exp{−hkαkβk+1 + hkα
′
k+1β

′
k} (1)

where hk are arbitrary constants, defining the interaction between nearest neighbours in
the kth and (k + 1)th plane,L6v

αk,βk

α′
k ,β

′
k
—the Boltzmann weights of the ‘source’ six-vertex

solvable model [9], state variablesαk, βk, . . . take values±1. For the planes (layers) we
impose periodic boundary conditionsK + 1 ≡ 1. The permissible configurations of the
six-vertex model are drawn on figure 2. The variables sitting on edges are represented by
arrows in figure 2. ‘+’ (‘ −’) correspond to arrows pointing up or to the right (down or to
the left). The local Boltzmann weights are invariant under inversion of all arrows.

2.1. Strong interplane interaction limith → ∞
To understand the nature of the interaction for the homogeneous model (all interplane
interaction constantshk equal: hk ≡ h, any k), let us consider the strong interplane
interaction limith → ∞. The configuration with maximal Bolzmann weight will give the
main contribution to the partition sum. To obtain this configuration, we should maximize
the exponential factor in (1) for all sites in all planes.

Without loss of generality, we can setαk = β ′
k = +1 for the kth plane. Then, to

maximize the exponential factor in (1), we should chooseβk+1 = −1; α′
k+1 = +1 in the

(k +1)th plane, i.e. vertex of type 4 (see figure 2), andαk+1 = +1; β ′
k+1 = −1. Performing

the next step, we getβk+2 = α′
k+1 = −1. This fits vertices of type 5 and 2; however, vertex

5 is unsuitable†. Proceeding analogously further, we get: planesk–(k + 4) are formed by
the vertices of type 1, 4, 2, 3 and 1, respectively. It is easy to see that each vertex (each
plane) can be obtained from the previous one by a clockwise rotation ofπ/2. After full
rotation over 2π , the configuration repeats.

Thus, in the strong interplane interaction limit, the model has a homogeneous structure
within each horizontal plane, and a spiral structure with period 4 in the vertical direction:
each plane configuration is obtained from the previous one by a clockwiseπ/2 rotation:

. . . ↗↘↙↖ . . . . (2)

The arrows in the formula above result from a vector summation of all arrows in each
plane: for example, the arrow↗ corresponds to a homogeneous configuration of vertices
of type 1 in figure 2.

† In order to get the maximal Boltzmann weight, we have to construct a configuration in each plane with the same
types of vertices. This can be done with type 1–4 vertices but not with type 5 vertices—they always go in pairs
with type 6 vertices.
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3. The matrix formulation

It is convenient to rewrite (1) in matrix form. Let us introduce the 22K × 22K matrix Lk

acting in the tensor product
∏K

1 ⊗g0
∏K

1 ⊗gn with elements

(Lk)
α1α2...αKβ1β2...βK

α′
1α

′
2...α

′
Kβ ′

1β
′
2...β

′
K

= δα1α
′
1
δβ1β

′
1
δα2α

′
2
δβ2β

′
2
. . . δαk−1α

′
k−1

δβk−1β
′
k−1

× exp(−hkαkβk+1 + hk−1α
′
kβ

′
k−1)L6v

αkβk

α′
kβ

′
k
δαk+1α

′
k+1

δβk+1β
′
k+1

. . . δαKα′
K
δβKβ ′

K
.

(3)

L6v is the 4×4 localL-matrix of the six-vertex model with the following nonzero elements:

L11
11 = L22

22 = a L12
12 = L21

21 = b L12
21 = L21

12 = c (4)

in which a, b, c are Boltzmann weights of permissible configurations (see figure 2). Here
and below in this section we borrow notations from the paper of Takhtajan and Faddeev [4].
Note that matricesLk, corresponding to neighbouringks, do not commute. The multivertex
Boltzmann weights (1) are matrix elements of the ordered matrix product ofLk over all
planes:

K∏
k=1

Lk = L

Lα1α2...αKβ1β2...βK

α′
1α

′
2...α

′
Kβ ′

1β
′
2...β

′
K

=
K∏

k=1

L6v
αk,βk

α′
k ,β

′
k

exp{−hkαkβk+1 + hk−1α
′
kβ

′
k−1}

(5)

(expressions (1) and (5) are the same, due to periodicity).
Using the notations introduced we can write the partition function of the model in the

usual (see e.g. [1]) form:

Z = Tr(T)M (6)

with transfer-matrixT being the trace of the ordered product of local matricesL along the
row (we shall denote matrixL acting in the siten asLn):

T = Tr

( N∏
n=1

Ln

)
. (7)

Here the Tr operation and the matrix product go overα-indexes (we shall call it the
‘auxiliary’ space) and the Tr operation in the previous formula (6) goes overβ-indexes
(‘quantum’ space).

The free energy per site in the thermodynamic limitN, M, K → ∞ is defined by the
maximal transfer-matrix eigenvalue

T9 = Λ9 f = −kBT lim
N,K→∞

1

NK
|Λmax |. (8)

An important feature of ourK-plane model is that its monodromy matrixT can be
written as an ordered product of more simple ones (we shall denote matrixLk from (3)
acting in the siten asLk

n):

T =
N∏

n=1

Ln =
N∏

n=1

( K∏
k=1

Lk
n

)
=

K∏
k=1

( N∏
n=1

Lk
n

)
=

K∏
k=1

Tk (9)

Tk =
N∏

n=1

Lk
n. (10)
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Matrix Lk from (3) can be written in a compact form as can be easily verified:

Lk = exp(−hkσ
(k)τ (k+1))L6v

k exp(hk−1σ
(k)τ (k−1)) (11)

where we denote by theσ (k) and τ (k) the diagonal matrixσ z = diag(1, −1) acting
nontrivially in thekth ‘auxiliary’ and thekth ‘quantum’ space, respectively:

(σ (k))
α1α2...αKβ1β2...βK

α′
1α

′
2...α

′
Kβ ′

1β
′
2...β

′
K

= δα1α
′
1
. . . δαk−1α

′
k−1

(σ z)αkα
′
k
δαk+1α

′
k+1

. . . δαKα′
K

K∏
i=1

δβiβ
′
i

(τ (k))
α1α2...αKβ1β2...βK

α′
1α

′
2...α

′
Kβ ′

1β
′
2...β

′
K

= δβ1β
′
1
. . . δβk−1β

′
k−1

(σ z)βkβ
′
k
δβk+1β

′
k+1

. . . δβKβ ′
K

K∏
i=1

δαiα
′
i
.

(12)

4. Bethe ansatz equations

It can be shown—see the appendix for a proof—that the 3D model under consideration
(equation (1)) is gauge equivalent† to the set of 2D six-vertex planes, each in its own
horizontal field with the strength defined by the vertical polarization in neighbouring planes
and interplane interaction constants: for thekth plane the field strength

Hk = hkyk+1 − hk−1yk−1 (13)

where polarizationyk is defined as usual:

yk = n
↑
k − n

↓
k

n
↑
k + n

↓
k

= 2n
↑
k − N

N
. (14)

n
↑
k (n

↓
k ) is the number of upward (downward) pointing arrows in a horizontal row in plane

k.
Therefore, the Bethe ansatz of the model is given by the well known formulae for the

six-vertex model in an external horizontal field (see e.g. [8]); below,nk = n
↑
k , yk = 2nk−N

N
):

3k(Hk) = aNeNHk

nk∏
j=1

aτ
(k)
j − b(21τ

(k)
j − 1)

a − bτ
(k)
j

+ bNe−NHk

nk∏
j=1

b − a(21 − τ
(k)
j )

−a + bτ
(k)
j

(15)

whereτ
(k)
j satisfy the set of Bethe ansatz equations

e2NHk (τ
(k)
j )N = (−1)nk+1

nk∏
l=1

τ
(k)
j τ

(k)
l − 21τ

(k)
j + 1

τ
(k)
j τ

(k)
l − 21τ

(k)
l + 1

nk = 1, 2, . . . N k = 1, 2 . . . K

(16)

where

1 = a2 + b2 − c2

2ab
(17)

a, b, c are Boltzmann weights of a symmetrical six-vertex model configurations (see
figure 2).

The global transfer-matrix eigenvalue is the product of those over all planes:

Λ{h}
{y} = Λh1,h2...hK

y1,y2...yK
= 3y1(H1)3y2(H2) . . . 3yK

(HK) yp = 2np − N

N
. (18)

† We thank Yury Stroganov for drawing our attention to this fact.
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Equations (15), (16) were obtained directly in [5, 6] using the quantum inverse scattering
method, and the analytic ansatz method, respectively.

We shall restrict ourselves to the model with all interplane interaction constants equal:
hk ≡ h, any k (below we refer to that case as the homogeneous model). However, as is
shown below, our results are also valid for some models with inhomogeneous sequences
{hk}.

To obtain the bulk free energy and complete phase diagram, one should find a sequence
of nk, {nk}Kk=1 that corresponds to the maximal transfer-matrix eigenvalue3max , and3max

itself, in complete three-parameter spacea/c, b/c, h. This programme can be performed
easily in the following limiting cases:

(1) For the single six-vertex model (decoupled planes limith = 0). Then BA solutions

τ
(k)
i lie on a unit circleτ (k)

j = eiλ(k)
j , λ

(k)
j real. The expression for3max is then found by the

integral equation method (see e.g. [1]).
(2) The ‘Ising chain’ case1 = ±∞, i.e. a = 0 or b = 0, any h is equivalent to

1 = ±∞, h = 0. Thus it is reduced to the previous case.
(3) For the free fermions case1 = 0. Then the RHS of (16) is equal to 1, and BA is

solved trivially. The complete analysis is done in [5].
In the general case, i.e. nonzeroh and1, the structure of BA equations does not permit

simple analysis. The reason is that in that case the locus of BA roots is unknown. The
problem is similar to that arising when one considers usual six-vertex model in external
horisontal field (see [8, 1]).

4.1. Connections between models with interplane constants{. . . h, h, h, h, . . .},
{. . . h,−h, h,−h, . . .}, and arbitrary sets of ‘h’ and ‘−h’

The models listed in the title look different, and different they are, having, for instance, a
different ‘strong interplane interaction limit’h → ∞ (this can be verified directly as was
done for the homogeneous model at the beginning of the paper). We shall show, however,
that they have precisely the same transfer-matrix spectrum, and therefore the same phase
diagram, with minor redefinition of phases.

Let us take the state of thekth plane withnk arrows pointing up, in a fieldHk, described
by equations (15), (16). Reversing all horizontal and vertical arrows, together with changing
the sign ofHk, leaves the Boltzmann weights and therefore the eigenvalue (15) invariant:

3yk
(Hk) = 3−yk

(−Hk) (19)

(the Bethe ansatz (16) changes accordingly). Using this formula, we write the global
transfer-matrix eigenvalue (18) for the set{y1, y2, −y3, −y4, y5, y6, −y7, −y8, . . .− yK} for
the homogeneous model:

Λh h h h
y1 y2 −y3 −y4

= 3y1(h(y2 + yK))3y2(h(−y3 − y1))3−y3(h(−y4 − y2))3−y4(h(y5 + y3))

= 3y1(h(y2 + yK))3y2(h(−y3 − y1))3y3(h(y4 + y2))3y4(h(−y5 − y3)). (20)

Remark. Here and below we assume the number of planesK to be infinitely large and
divisible by all numbersK = 2 ∗ 3 ∗ 4 ∗ . . ., K + 1 ≡ 1, to avoid complications connected
with the boundary effects. For the sake of simplicity we write down only the significant
part of the multiplication (18), then it continues periodically.

Let us write down the global eigenvalue for the system with alternating constants:

Λh −h h −h
y1 y2 y3 y4

= 3y1(h(y2 + yK))3y2(h(−y3 − y1))3y3(h(y4 + y2))3y4(h(−y5 − y3)). (21)
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Comparing with the previous formula we have

3h h h h
y1 y2 −y3 −y4

= 3h −h h −h
y1 y2 y3 y4

(22)

(periodical continuation is implied—see remark above).
Analogously one obtains

3h h h h
y1 y2 y3 y4

= 3h h −h −h
y1 y2 y3 −y4

. (23)

Actually, one could coin such transformations between the model with homogeneous
sequences and those with arbitrary sequences of ‘h’ and ‘−h’: {hk}Kk=1, hk = ±1,
k = 1, 2, . . . K. For instance,

Λh h −h
y1 y2 y3

= Λh h h ... ... ... h
y1 y2 y3 −y4 −y5 −y6

(24)

and so on.

5. Symmetries

Here we make use of the results of the previous paragraph to establish transformations
which map the eigenvalue to the eigenvalue of the same model.

First of all, note that simultaneous inversion of polarization in all planesZ

Z{y} = {−y} (25)

leaves the eigenvalue invariant:

Λ{h}
{−y} =

∏
k

3
hk−yk

(−hkyk+1 + hk−1yk−1) =
∏
k

3hk

yk
(hkyk+1 − hk−1yk−1) = Λ{h}

{y}.

This is also the direct consequence of the fact that local Boltzmann weight (1) is invariant
under the transformationall αk, βk → −αk, −βk.

Another transformation we obtain, inverting the order of the{y}-set and the{−h}-set is
as follows:

Λh1,h2...hK

y1,y2...yK
= Λ−hK −hK−1......−h2−h1

y1 yK yK−1... y3 y2

(this is proved analogously). TransformationJ :

J {y1, y2 . . . yK} = {y1 yK yK−1 . . . y3 y2} (26)

is a symmetry for the model with alternating constants:

Λh −h h −h
{y} = Λh −h h −h

J {y} .

Then, one more independent symmetry exist for that model:

F {y} = {y2 −y3 . . . yK −y1} Λh −h h −h
{y} = Λh −h h −h

F {y} . (27)

For completeness, we define operator of the one-step shiftingS:

S{y} = {y2 y3 . . . yK y1}. (28)

Evidently,Sn, integern, is a trivial symmetry for the homogeneous model andS2n is a trivial
symmetry for the model with alternating constants. TransformationsZ, J, F, S2 are basic
symmetries for the model with alternating constants. Let us obtain the basic symmetries for
the homogeneous case.Z andS are already symmetries.

Then, define the transformation from (22) between the two models:

Q{y} = {y1 y2 −y3 −y4 . . .} Q−1 = Q.
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TransformationsQJQ andQFQ are the symmetries sought for:

P {y} = QJQ{y} = {y1 −yK yK−1 −yK−2 . . . y3 −y2} P 2 = I

QFQ = S.
(29)

So, for the homogeneous modelall hk ≡ h two nontrivial symmetriesZ and P exist
defined by (25) and (29). Working out the same procedure for the modelh, h,−h, −h . . .

does not give additional information. It is noteworthy also that theZ-symmetry is not
independent but can be expressed in terms of shifting andP -symmetry

Z = (SP )2.

Nevertheless it proves convenient to keep it in mind as a separate symmetry. As is shown
below,Z andP symmetries, having been combined with the non-degeneracy hypothesis, put
drastic constraints on the polarization set{y} which corresponds to the maximal eigenvalue
of the global transfer-matrix of the homogeneous model.

6. Finding the maximal eigenvalue set{y}

We are now in a position to solve the maximal eigenvalue problem, for the homogeneous
model. First we have to point out which set{y} corresponds to it for any value of parameters
a/c, b/c, h. We shall parametrize the possible sets by a periodT and define the set{y(T )}
as that with periodically repeating entries:

{y(T )} = {y1 y2 . . . yT y1 y2 . . . yT . . . yT } {y(T )}T +n = {y(T )}n.
Note that casesT = 1 andT = 2 are trivial because they lead to vanishing of interactionh

from all expressions (see (13)–(16)). The symmetryZ (see (25)) does not effect the period
T of the set, but the symmetry (29) does. Having been applied for oddT = 2n + 1, it
doubles the period:

P {y(T )} = {ỹ(2T )}. (30)

For instance for the periodT = 3

P {y1 y2 y3 . . .} = {y1 −y3 y2 −y1 y3 −y2 . . .}.
(We write down only the simplest periodically repeating pattern.)

Note that set{y(T )}, odd T for the homogeneous model, corresponds to the sequence
of period 4T for the model with alternating constants:Q{y(T )} = {ỹ(4T )}.

For the sets with evenT = 2n the symmetry (29), generally speaking, does not effect
the period, as can be easily verified.

To go further, we need an additional piece of information concerning the maximal
eigenvalue set{y}. We supply it by stating:

The maximal eigenvalue set for the homogeneous model is unique, modulo shift, for all
phases except the ferroelectric phase I (see figure 3).

This statement equates to stating that the maximal global transfer-matrix eigenvalue is
non-degenerate. For the ‘source’ six-vertex model, this is true:y = 0 for all phases except
ferroelectric, andy = 0 is just the value invariant under action ofZ-symmetry (25). Strong
coupling limit h → ∞ is non-degenerate, too. As to the exclusion—ferroelectric phase I
(see figure 3), it has degeneracy 2K , K being the number of planes. Indeed the ferroelectric
phase is built up froma- (or b-) vertices only. It follows from (1) that Boltzmann weight
does not depend onh for the homogeneous model, whatevera-vertices (type 1 or type
2—see figure 2) form each plane.
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Figure 3. Phase diagrams of the 3D-extended six-vertex model on cubic lattice in thea/c,
b/c plane, for the different values of interplane constanth. (a) decoupled planes limith = 0;
(b) h = 0.15; (c) h = 0.3; (d) h = 0.5. The phase transitions between the phases II/IV,
II/V, V/III are of the first order. The phase transitions between the phases IV/V are of the
second-order, Pokrovsky–Talapov-type. Transition I/II is the Kosterlitz–Thouless-type transition.
Curves separating phases III/V, V/IV are given by:1 = cosh 4h, (b/c) = (a/c) exp 4h − 1,
respectively.

For all other phases, the hypothesis of non-degeneracy means that the maximal set
{y}max is invariant under action ofZ- andP -symmetries (25), (29), modulo arbitrary shift†.

† Note that for the model with alternating constants{. . . h, −h, h, −h, . . .}, the maximal set{y}max is always
degenerate. It is the additional symmetryF (27) that accounts for the degeneracy. The same holds for the model
with the constants{. . . h, h,−h, −h, . . .}.
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Figure 3. (Continued)

The immediate consequences are:
(1) From (25): that the average value of〈yp〉max must be zero:

1

K

K∑
p=1

yp = 0.

(2) From (30): that the maximal set cannot have an odd period.
Also, the period of maximal set cannot beT = 2n, n odd. To see that, considerT = 6.

For the set to be invariant under action ofZ-symmetry (equation (25)) it must have form

{y(6)} = {u v w −u −v −w . . .}.
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Acting on it by theP -symmetry

P {y(6)} = {u w −v . . .}
one obtains the set with period 3. Analogously one obtainsP {y(2n)} = {ỹ(n)}, n odd, in
contradiction with the non-degeneracy hypothesis.

Since the maximal sets{y(T )} with T andT/2 odd are forbidden, we are left with the
only possible choice

T = 4n.

For that case,P {y(4n)} = {ỹ(4n)} always.
The first nontrivial case isT = 4. Note that it is just the period which arises in the strong

interplane interaction limith → ∞. According toZ-symmetry (or also toP -symmetry)
invariance, the maximal set reads

{y(4)} = {η ξ −η −ξ . . .}. (31)

6.0.1.T = 8. P - andZ-symmetry invariance lead to the following set:

{y(8)} = {u v 0 v −u −v 0 −v . . .}. (32)

With increasingT , the admissible structure looks more and more complicated. ForT = 12

{y(12)} = {u v w r −w v −u −v −w −r w −v . . .} (33)

and so on. Thus, we have produced the hierarchy of sequences which are candidates
for the planes polarization set{y}max corresponding to the maximal global transfer-matrix
eigenvalue. The number of parameters is reduced essentially but still there is quite some
freedom left. The results are in agreement with numerical data. The latter, however, forces
us to formulate the final hypothesis which we cannot prove. It is described in the following
section.

7. The final hierarchy

Let us assume that the maximal set contains at least one planek with maximal polarization
yk = 1. It follows immediately from (25) and non-degeneracy, that some another planep

hasyp = −1. Denote the distance between these two planes byA = |p − k|. We shall
parametrize the sequences{y} by the value ofA. The entries of maximal set{y}max obey
the following rule:

yk+n = −yk−n n odd

yk+m = yk−m m even
(34)

and the same with the replacement ofk by any other number̃k, whereyk̃ = ±1. From (34)
those numbers arẽk = k ± An, integern. Making use of (34), forA odd we obtain the
y-set of period 4A {y(4A)}, and {y(2A)}, for A even. The rules (34) are consistent withZ

andP symmetries, and can be derived from them.
Let us takeA = 1. Here we have

{y} = {1 1 −1 −1 . . .} (35)

—just the maximal set for theh → ∞ limit (phase 4 in the phase diagram).A = 2 produces
the set

{y} = {1 −ξ −1 ξ . . .} (36)
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—the maximal set for phase 5 in the phase diagram. It coincides with that from (32) when
η = 1. ForA = 3 one obtains from equations (34):

{y} = {1 v w −1 −w v −1 −v −w 1 w −v . . .} (37)

which coincides with (33) whenu = 1, r = −1.
A = 4 produces the set (32) with the substitutionu = 1, and so on.
Phases withA = 1, 2 do exist on the phase diagram. However, we have failed to

find numerically the phases withA = 3, 4. From this we conclude that other members
of hierarchy, withA > 4, do not appear, either. We suggest that the higher members of
hierarchy do appear when one takes into consideration more distant than nearest neighbours’
plane–plane interaction. For instance, we have checked that the phase withA = 3
(equation (37)) does enter the phase diagram when one includes additional interaction
between the planesk → k + 3, anyk.

8. The phase diagram

We have shown in the last two sections that the set of polarization constants{y} =
y1, y2 . . . yK which corresponds to the maximal eigenvalue (the maximal set) must have
the period divisible by 4:T = 4n. For the simplest case,T = 4, the maximal set is
(31) and the transfer-matrix eigenvalue is given by equation (20), with the substitution
y1 = y3 = y5 = η; y2 = y4 = yK = ξ :

Λ2/K = 3η(2hξ)3ξ (−2hη).

We can always chooseξ andη positive. Therefore we only have to maximize the eigenvalue
(18) within the two-parameter space

ξ = 2n − N

N
η = 2m − N

N
n, m = 0, 1 . . .

N

2
.

By means of the Newton–Ralphson method we are able to solve BA equations directly and
find the block with the largest eigenvalue for system size up toN = 32.

It turns out, however, that the maximal eigenvalue for all values of parametersa, b, c

and h belongs either to the blockn = m = N/2 (in which caseh vanishes from all
equations (15), (16), yielding the known results for the six-vertex model), or to the block
with at least one ofn, m, saym equal to zero:m = 0. Finally the Bethe ansatz (15), (16)
can be rewritten

Λ2/K = 3m=0(2hξ)3ξ (2h) = 3132

31 = aNe2h(2n−N) + bNe−2h(2n−N)

32 = aNe2hN
n∏

j=1

aτj − b(21τj − 1)

a − bτj
+ bNe−2hN

n∏
j=1

b − a(21 − τj )

−a + bτj

e4hN(τj )
N = (−1)n+1

n∏
l=1

τj τl − 21τj + 1

τj τl − 21τl + 1
.

Note that the eigenvalue is invariant under the transformation

a → b b → a h → −h.

Figures 3(a)–(d) show the phase diagram of the model in the space of Boltzmann
weights ratiosa/c, b/c, for the different values of interplane constanth. Figure 3(a)
(decoupled planes,h = 0) repeats well known results for usual six-vertex model: the three
distinct phases exist separated by the lines1 = ±1. These phases are (for details see [8]):
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(I) Antiferroelectric phase. C-vertices (types 5 and 6) are dominant; in sufficiently low
temperatures vertex plane configuration is filled with arrows alternating in both directions
with step 1.

(II) Disordered phase−1 < 1 < 1. All types of vertices are present; there are no types
of vertices which are dominant. Here lies the high-temperature limit, so one should expect
disorder.

(III) Ferroelectric phase1 > 1. Phase III occupies two separated regions, the upper
left and the bottom right in the phase diagram. In the upper left region,b/c > a/c + 1,
each plane is occupied by either exclusively type 3, or exclusively type 4 vertices. It is
convenient to consider the arrow resulting from vector summation of all arrows in the plane:
for the type 3 configuration, all arrows on the plane are pointing up and to the left, resulting
is up-left arrow↖, whereas for the type 4 configuration, the resulting is down-right arrow
↘, see figure 2. Polarization vector (14) modulus reaches its maximum|y| = 1, namely,
y = 1 for the type 3 configuration andy = −1 for the type 4 configuration.

If we associate with each planek the corresponding arrow:↖ for type 3,↘ for type
4, then the state of the multiplane model in phase III, upper left region, is characterized by
the random sequence

. . . ↖↘↘↖↘↖↖↖ . . . (38)

consisting of these arrows randomly placed. Of course switching on some vanishing external
field favouring type 3 configuration will lift up this degeneracy, giving the homogeneous
sequence

. . . ↖↖↖↖↖↖↖ . . . .

The state of the model in the bottom right region, phase III,a/c > b/c + 1 will be
analogously characterized by the type 1, type 2 vertices configurations, or up-right, down-
left ↗, ↙ arrows:

. . . ↗↗↗↙↗↙↙↗ . . . .

In figures 3(b)–(d) the phase diagrams for the systems with a fixedh in increasing
order are given. The phases I–III are exactly the same as in the uncoupled planes limit in
figure 3(a). For nonzero couplingh the regions occupied by phase III are given by the
formula 1 = cosh 4h, and two new phases arise.

(IV) Layered antiferroelectric phase. This phase is exactly the one described as the
strong interplane coupling limit in section 2. Each plane is in the ferroelectric phase, but
plane k + 1 configuration strictly follows from one in thekth plane byπ/2 clockwise
rotation. So, the plane-layers in increasing order are formed by the unique, up to shifting,
sequence of vertices, or the resulting arrows:

. . . ↗↘↙↖↗↘↙↖ . . .

(compare with the sequence (38)).
In that phase polarization vectors (14) alternate every other planeyk+2 = −yk:

. . . yk, yk+1, . . . = . . . 1; −1; −1; 1; 1; −1; −1; 1 . . . (39)

forming the layered antiferroelectric structure (in each separate plane the structure is
ferroelectric). Polarization vector modulus in each plane reaches its maximal value|yk| = 1,
any k.

(V) Phase V is an intermediate phase which can be described as follows. The system
splits into two subsystems, each contains two planes,kth and (k + 2)th, e.g. ‘the first
and the third’ and ‘the second and the fourth’. In one of the subsystems the planes are
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Figure 4. Distribution of polarizations in the intermediate phase V. This phase is characterized by
the periodically repeated set of polarizations (in planes) (36){1 −ξ −1 ξ . . .}, ξ = (2n−N)/N ,
n being the number of upward pointing arrows in a row in the corresponding plane. The results
of numerical calculations ofξ for the system sizeN = 32 are shown. The area is divided into
eight sectors, sector numberk corresponds to 2k−1 6 n 6 2k. Thus, polarization monotonically
increases fromξ = −1 on the second-order phase transition line toξ = 0 near the point(0, 1).
On the ‘free-fermions’ circle1 = 0 inside the intermediate phase, the exact value ofξ is given
by sin(πξ/2) = −(a/b) sinh(4h).

in ferroelectric phase, with alternating polarization vectoryk = 1, yk+2 = −1. Another
subsystem is partially disordered:yk+1 = 2x − 1 = −yk+3. Again, as the previous one,
this structure has period 4. Within the phase 4,x varies (see figures 4(a) and (b)); on the
transition line between phases IV and V,x goes to zero continuously, forming the strong
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interplane coupling structure in phase 4. For the free-fermions limit,1 = 0, ora2+b2 = c2,
the value ofx is known exactly (see [5]):

cosπx = a

b
sinh 4h for a < b. (40)

Outside the free-fermions curve, the branches with equal polarizations are arranged quite
regularly, as is seen from figures 4(a) and (b). However, we cannot present the exact
formula for the moment.

The analytical and numerical calculations show that there are no other phases in the
phase diagram.

The second-order phase transition between the phases V and IV can be found considering
the equality

Λ(n/N → 0) = 1. (41)

Proceeding analogously to [8] we get

τj = e−4h.

For ae4h > b, b > a we have∏ aτj − b(21τj − 1)

a − bτj
e−4h =

∏ a − 2b1 + be4h

ae4h − b
e−4h = 1

and a
b

sinh 4h = 1 − 1e−4h, or using (17),

b/c = (a/c) exp(4h) − 1. (42)

All phase curves are symmetrical with respect toa = b line.
Proceeding with the same equality (41) and takingb > ae4h, we obtain

1 = cosh 4h. (43)

But now this line marks only the right margin for the phase transition III/V, and not
necessarily the exact point. We have found, however, with all numerical accuracy, that
line (43) is indeed the exact transition point. With increasingh, the phases IV and V
expand in space, and the others diminish. Whenh reachesh1 = 0.458 134. . . and higher,
phase II disappears completely as is shown in figure 3(d). The fraction of space occupying
by the phases II, III diminishes exponentially withh, as is seen from (42), (43).

Finally, the transition line between the phases II/IV (II/V) or I/IV (I/V) in figures 3(b)–
(d) is obtained numerically. The line ends in points(0, 1) and(1, 0) which agrees with the
limiting ‘Ising chain’ case. Phase transition II/IV (II/V) or I/IV (I/V) is of the first order.
Indeed in phases II or I the partition sum does not depend onh at all (all nk ≡ N/2 and
polarization vectoryk for all k is zero). The values of theyk-set jump when crossing the
critical curve and the dependence onh show up. So the partition sum will have a cusp as
a function ofh.

The transition IV/V is of the second order. On this line, the order parameters—
polarization vectorsyk (equation (14)) change continuously when approaching the critical
point. The second derivative for free energy overh diverges as the inverse square root
∼ 1/

√
h − h∗ in the critical point (Pokrovsky–Talapov-type transition [9]).

We have described the phase diagram of the 3D-extended model with the homogeneous
set of constants. The phase diagrams for the models with arbitrary sets of ‘h’ and ‘−h’
constants are the same, with redefinition of phases (see equations (22)–(24)). Note that
for the model with alternating constants,{. . . h,−h, h,−h, . . .}, the period is always 2 (in
planes).
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9. Conclusion

We have obtained the phase diagram for the 3D solvable multilayered six-vertex model,
in full three-parameter space. The model enjoys locality of interactions and positivity of
Boltzmann weights. The applicability of the method to other solvable vertex models with the
ice rule (46) is shown in [6]. In view of possible applications, note that the strength of layer–
layer interactionh can vary from plane to plane, as well as the anisotropy parameter within
each layer. Another possibility is to include more distant than nearest-neighbour interactions
along third axis. The resulting solvable models are ones with competing interactions [7].

Another interesting question is the universality class of the model we have considered.
The finite size scaling analysis (see e.g. [10]) of new (due to plane–plane coupling) critical
phase, named V in the phase diagram, shows that it is described by a 2D conformal field
theory with central chargec = 1. Thus it belongs to the same universality class as the
‘source’ six-vertex model.
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Appendix

The partition function for the system with open boundaries is given by

Z = T M

whereT is the global monodromy matrix. In our case (see equations (3)–(11))T factorizes
into the product

T =
K∏

k=1

Tk (44)

where the ‘local monodromy matrix’ for thekth plane

Tk =
N∏

n=1

e−hkσ
(k)τ

(k+1)
n L(k)

n ehk−1σ
(k)τ

(k−1)
n

Ln being the matrix of Boltzmann weights for the six-vertex model; upper index(k)

corresponds to thekth plane, and matricesσ and τ are defined by (12). Omitting the
index k in the right-hand side of the last formula for convenience and denoting

σ (k) → σ τ (k+1)
n , τ (k−1)

n → τ ′
n, τ ′′

n , hk → h, hk−1 → g

we have

Tk(h, g) =
N∏

n=1

e−hστ ′
nLnegστ ′′

n

= e−hστ ′
1L1egστ ′′

1 e−hστ ′
2L2egστ ′′

2 . . . e−hστ ′
N LNegστ ′′

N . (45)
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The exponential factors in this expression commute with each other because they are
diagonal matrices (see (12)). The commutation withLn is given by

[exp(h(σ + τn)τ
′′
p )), Ln] = [exp(h(σ + τn)τ

′
p)), Ln] = 0

which is equivalent [5, 6] to the charge conservation property of the ‘source’ six-vertex
model (4):

L6v
αβ

α′β ′ = 0 unlessα′ + β ′ = α + β. (46)

Using these commutation rules, we move all exponents in (45) outside to the left and to the
right. For instance, to move the term e−hστ ′

2 to the left, one inputs the unity

e−hστ ′
2e±hτ1τ

′
2 = e−h(σ+τ1)τ

′
2ehτ1τ

′
2.

The first factor in this expression commutes withL1 and goes to the left while the second
one commutes with allL1, L2, . . . LN (because they act in the different subspaces) and goes
to the right. Repeating the similar procedure for all exponents, and taking into account∑N

m=2

∑m−1
n=1 = ∑N−1

n=1

∑N
m=n+1, we obtain

Tk(h, g) = Ake−hσ
∑N

n=1 τn
′Tk(0, 0)egσ

∑N
n=1 τn

′′
A−1

k

Ak = exp

{ N∑
m=2

m−1∑
n=1

(−hτ ′
mτn − gτmτ ′′

n )

}
.

(47)

Then, due to the charge conservation (46),
∑N

n=1 τ (k)
n is a constant. For the six-vertex

model this property is known also as the ice rule (see e.g. [1, 8]):

1

N

N∑
n=1

τ (k)
n = yk

—the so-called polarization vector.yk may take values−1 6 yk 6 1.
Restoring the indexk, Ak can be written as

Ak = Ck+1,kCk,k−1 Ck+1,k = exp

{ N∑
m=2

m−1∑
n=1

(−hkτ
(k+1)
m τ (k)

n )

}
.

Multiplying T1T2 . . . TK and usingA−1
k Ak+1 = C−1

k,k−1Ck+2,k+1, we get for the global
monodromy matrix (9):

T = C1,0C2,1e−h1σ
(1)Y2T1(0, 0)eh0σ

(1)Y0C−1
1,0C3,2

. . . C−1
K−1,K−2CK+1,Ke−hKσ (K)YK+1TK(0, 0)ehK−1σ

(K)YK−1C−1
K+1,K C−1

K,K−1.

HereYk = Nyk.
Moving C-factors (C−1-factors) to the left (to the right), one obtains

T = B

( K∏
k=1

e−hkσ
(k)Yk+1Tk(0, 0)ehk−1σ

(k)Yk−1

)
B−1

B =
K∏

k=1

Ck,k−1.

(48)

B depends only onτ (k)
n , and therefore it is a gauge transformation. In the other hand, one

can consider the transfer-matrix for the six-vertex model in a horizontal field of strengthH :

T6v(H) =
N∏

n=1

e− H
2 σLne− H

2 σ .
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Using the same procedure, we arrive at formula (47) with substitutionh = −g = H/2;
τ ′
n, τ

′′
n → 1:

T6v(H) = Ae− NH
2 σT6v(0)e− NH

2 σA−1

in which A again is a gauge transformation. Comparing the last relation with (48), we see
that partition function of our model and the set six-vertex planes,kth plane in a field

Hk = hkyk+1 − hk−1yk−1

(both systems with open boundaries) are gauge-equivalent. Hence, their transfer-matrices
are equal:

Tour model =
K∏

k=1

T6v(hkyk+1 − hk−1yk−1).
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